Statistics 515 - Homework

 # Date Due Homework Grad Students Extra 1 Wednesday,   Sept. 5 ☺ 1. Page 22: Problem 1.28 ☺ 2. Page 67: Problem  2.68 a;            Also draw a histogram for this data, comment on the            shape of the distribution, interpret Me and Mo. The textbook problems in PDF available here. ☺ Page 67: Problem  2.68b. 2 Monday,   Sept. 17 ☺Problem 1.  Do not use SAS for this problem. For the dataset: 4 kg, 6 kg,1 kg, 1 kg, 3 kg  find the range, variance, and standard deviation. What are the units of each measure? Show your work. ☺Problem 2.  Use SAS for this problem.    Use the data set in problem 2.130 on page 94.    a) Calculate the mean, median, and standard deviation    b) Are there any outliers? Explain.    c) Construct a Q-Q plot for this data. Comment. * Remember to include a copy of the SAS code you ran, and any output you refer to with your answers. ☺ For Problem 2 use the SAS output to find the interquartile range. 3 Wednesday,   Sept. 26 ☺ 1. Page 156: Problem 3.64 a,b ☺ 2. Page 202: Problem 4.30 a,b ☺ 3. Page 217: Problem 4.60 a,b,c ☺Page 202: Problem 4.30c 4 Wednesday,   Oct. 17 ☺ 1. Do not use SAS for this problem.        Given random sample data of n=18, mean=0.9317 and         standard deviation = 0.0753 do the following:         a) Construct a 95% CI for the mean.         b) Construct a 95% CI for the standard deviation. ☺ 2.  Do not use SAS for this problem.            Page 349: Problem 7.46 a,b           (Use the Agresti and Coull correction.) ☺ 3. Do not use SAS for this problem.           Page 356: Problem 7.63 ☺ 4. Use SAS for this problem.            Use the following data to do the following:         a) Construct a 95% CI for the mean.         b) Construct a 95% CI for the standard deviation.         c) Use a Q-Q plot. What is your conclusion about the              two CIs in part a) and b)? ☺Page 349: Problem 7.46 c 5 Wednesday,   Oct. 24 ☺ 1. Page 382: 8.31a.            (Use the fact that the mean=9.2576 and              standard deviation=1.2036). ☺ 2. Use the data for problem 1 and test            Ho: sigma^2=1 vs Ha: sigma^2>1. ☺ 3. Page 394: 8.59 a,b ☺ 4. Page 450: 9.19a. Construct the confidence interval, assuming the variances are equal. Bulimic: mean=17.82, std=4.92; Normal: mean=14.14, std=5.29. ☺For prob. 2, also, test    Ho: sigma^2=1 vs.    Ha: sigma^2 <>1                 (not equal). 6 Wednesday,   Nov. 7 ☺ 1. Page 533: 10.24 a,b,c.              The p-value for this table is p=.018. ☺ 2. See the problem here. ☺ 3. Use SAS for this problem.            Generate your own SAS output for problem 2. ☺ Relax, nothing extra for a change. 7 Wednesday,   Nov. 14 ☺ 1.  Do not use SAS for this problem.           Page 605: 11.14 a-g.           Also, do the following:                     h) Plot the scattergram of the data.           i)  Plot the regression line on the scattergram. ☺ Relax, nothing extra for a change. 8 Monday,   Nov. 26 ☺ 1. Page 610: 11.26 a,b,c.           The SAS output is attached here.           You do not need to do any additional SAS runs!           Use the SAS output to answer all the questions,           including the following:       d) Check the assumptions for the regression analysis.            Be specific.       e) Is B1 statistically significant? Explain.       f)  Interpret the result from the ANOVA table.       g) Show and interpret the 95% CI for B1.       h) Show and interpret the coefficient of determination. ☺ Relax, nothing extra for a change. NO MORE HOMEWORKS ;-))