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  Abstract 

 Multiple factors infl uence voice quality measurements (VQM) obtained during an 
acoustic voice assessment including: gender, intrasubject variability, microphone, envi-
ronmental noise (type and level), data acquisition (DA) system, and analysis software. 
This study used regression trees to investigate the order and relative importance of 
these factors on VQM including interaction eff ects of the factors and how the outcome 
diff ers when the acoustic environment is controlled for noise. Twenty normophonic 
participants provided 20 voice samples each, which were recorded synchronously on 
fi ve DA systems combined with six diff erent microphones. The samples were mixed 
with fi ve noise types at eight signal-to-noise ratio (SNR) levels. The resulting 80,000 au-
dio samples were analyzed for fundamental frequency (F 0 ), jitter and shimmer using 
three software analysis systems: MDVP, PRAAT, and TF32 (CSpeech). Fifteen regression 
trees and their Variable Importance Measures were utilized to analyze the data. The 
analyses confi rmed that all of the factors listed above were infl uential. The results sug-
gest that gender, intrasubject variability, and microphone were signifi cant infl uences 
on F 0 . Software systems and gender were highly infl uential on measurements of jitter 
and shimmer. Environmental noise was shown to be the prominent factor that aff ects 
VQM when SNR levels are below 30 dB. 

 

Copyright © 2006 S. Karger AG, Basel

 

 Dimitar Deliyski, PhD
Communication Sciences and Disorders
University of South Carolina, 1621 Greene Street
Columbia, SC 29208 (USA), Tel. +1 803 777 2245
Fax +1 803 777 3081, E-Mail ddeliyski@sc.edu 

 © 2006 S. Karger AG, Basel
1021–7762/06/0584–0274$23.50/0 

 Accessible online at:
www.karger.com/fpl 

Fax +41 61 306 12 34
E-Mail karger@karger.ch
www.karger.com



 Regression Tree Approach in Acoustic Voice 
Analysis 

275 Folia Phoniatr Logop
2006;58:274–288 

 Introduction 

 Accuracy of acoustic voice analysis is essential when used to assist clinicians in 
the appropriate diagnosis and treatment of vocal pathologies. Multiple factors infl u-
ence voice quality measurements (VQM) obtained during an acoustic voice assess-
ment. These factors include: gender  [1, 2] , intrasubject variability (token)  [3, 4] , 
microphone  [5] , environmental noise  [6–9] , data acquisition (DA) system  [8, 10] , 
and analysis software  [11] . Knowledge related to the order and extent of infl uence 
of these factors has an immediate signifi cance for speech-language pathologists who 
utilize computer-based acoustic VQM. It is important for clinicians to be aware of 
these factors and the degree of their infl uence in order to reduce their impact on 
VQM. 

 Gender 
 It is widely accepted that male and female voices are fundamentally different 

as a result of basic physiological characteristics, which cause signifi cant differences 
in fundamental frequency (F 0 )  [2] . Fluctuations in F 0  and increased noise in female 
phonations are also related to anatomical characteristics  [12] . According to Baken 
and Orlikoff  [2] , the relationship between gender and shimmer measurements is not 
clear. 

 Intrasubject Variability 
 A technique utilized to control for intrasubject variability is to obtain the mean 

VQM from multiple tokens. A study by Scherer et al.  [4]  investigated the number of 
tokens needed to acquire a representative perturbation value. For stable voices, at 
least 6 tokens were recommended and for voices with normal to high levels of insta-
bility, at least 15 tokens were recommended. The National Center for Voice and 
Speech (NCVS) recommends that 10 tokens are needed to obtain reliable perturba-
tion measures  [3] . 

 Microphone 
 A study by Titze and Winholtz  [5]  demonstrated that the type of microphone 

used has a signifi cant impact on acoustic voice analysis. The results demonstrated 
that: condenser microphones and microphones with a balanced output performed 
the best. Microphone sensitivity and distance were found to have the largest effect 
on perturbation measures. NCVS  [3]  recommends that a professional grade con-
denser microphone with a minimum sensitivity of –60 dB should be used; specifi -
cally, a miniature head-mounted microphone with balanced output and a mouth-to-
microphone distance less than 10 cm. A recent study by Deliyski et al.  [10] , which 
investigated the effects of DA hardware on VQM, was in agreement with Titze and 
Winholtz  [5]  and Titze  [3] . 

 Environmental Noise 
 Noise added by the acoustic environment and data acquisition hardware be-

comes inseparable from noise originating from the larynx in perturbation measure-
ments. According to NCVS  [3] , recordings should be made in a sound-treated room 
with ‘ambient noise less than 50 dB’. Ingrisano et al.  [6]  investigated the effect of 
noise on computer-based analyses of voice samples and found that jitter and shim-
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mer measurements increased as noise fl oors increased. Carson et al.  [8]  examined 
the effect of noise on computer-based analyses of voice samples and suggested that 
appropriate recording standards are needed to obtain valid and reliable results rela-
tive to voice production samples, recording processes, and analysis systems. Deli-
yski et al.  [9]  suggested that an instrumental measurement of the noise present in the 
acoustic environment is imperative when acoustic analysis is used for clinical voice 
assessment. A recommended signal-to-noise ratio (SNR) level of 42 dB was estab-
lished, which allowed for errors due to noise in up to 1% of voice measurements. A 
level to produce reliable results was set at 25 dB SNR maintaining all noise-contrib-
uting factors in an acoustic environment within an error rate of 5%. 

 Data Acquisition Systems 
 Deliyski et al.  [10]  investigated the relative performance of different DA envi-

ronments (microphone-to-DA-system combinations) and the relationship between 
their technical characteristics and VQM performance. The effective dynamic range, 
discretization error, and differences in VQM parameters as well as the relationship 
between these factors for 18 DA environments were compared. The effective dy-
namic range of the DA environments was the main factor infl uencing shimmer and 
had a signifi cant infl uence on jitter. Discretization error was found to be the main 
factor infl uencing the accuracy of F 0  across DA environments. The importance of 
selecting high-quality DA systems combined with microphones that provide high 
SNR was emphasized. 

 Software 
 The analysis software is another factor that signifi cantly affects VQM, but re-

search on this topic is very limited and inconclusive. The average F 0  is a time-cali-
brated measurement. However, jitter and shimmer differences due to software are 
diffi cult to assess in the absence of a calibrated reference given that jitter and shim-
mer are acoustic estimates of the frequency and amplitude perturbations of the glot-
tal velocity waveform. Depending on the pitch extraction algorithm these estimates 
can differ substantially  [11] . 

 Purpose and Research Questions 

 Regression trees derived from the Classifi cation and Regression Trees statisti-
cal method (CART)  [13]  allowed for the representation of the interaction of the 
aforementioned factors and the order in which the factors infl uence F 0 , frequency 
perturbation (jitter), and amplitude perturbation (shimmer), as measured by three 
software systems. As a logical extension of previous fi ndings  [9] , the investigators 
were interested in whether the factors would differentially infl uence VQM over 
three noise level ranges. Range A included recommended noise levels only (from 66 
to 42 dB SNR). Range B consisted of the recommended plus reliable levels (from 
66 to 26 dB SNR). Range C included all noise levels studied (from 66 to 10 dB 
SNR). 

 The specifi c research questions were as follows: 
 (1) What are the interaction effects of gender, intrasubject variability, micro-

phone, noise type, noise level, DA system, and analysis software on VQM? This 
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question was answered by building an optimal and validated model for each mea-
surement: F 0 , jitter and shimmer, using regression trees. 

 (2) What is the order and relative importance of gender, token, microphone, 
noise type, noise level, DA system and analysis software as factors infl uencing VQM? 
This question was answered by analyzing the results of the Variable Importance 
Measures (VIM) for each regression tree. 

 (3) How do these infl uences differ depending on whether the acoustic environ-
ment was controlled for noise or not? This question was answered by comparing the 
VIM for the three SNR ranges. 

 Method 

 The data utilized to answer the abovementioned research questions were obtained using the 
instrumentation and procedures previously detailed in Deliyski et al.  [9] . 

 Instrumentation and Procedures 
 The instrumentation included: computers, soundcards, microphones, and VQM software. 

Five DA systems, comprised of computers and soundcards, were utilized in this study. The DA 
systems included: three desktop computers, one with Computerized Speech Lab Model 4400 by 
Kay Elemetrics Corp. (CSL), one with an enhanced music soundcard (DT1), and one with a built-
in soundcard (DT1), and two laptop computers, one of which (LT1) was coupled to a preampli-
fi er, and the second one (LT2) utilized a built-in soundcard. The DA systems were coupled to six 
microphones and rotated to balance for microphone-to-DA-system interactions. The micro-
phones included: three desktop condenser microphones (C0, C1, C2), of which C0 had balanced 
output, two desktop dynamic microphones (D1, D2), and a head-mount condenser microphone 
with balanced output (H0). Three voice analysis software systems were used in this study: MDVP 
 [14, 15] , PRAAT (version 4.1.5)  [16, 17] , and TF32 (previously known as CSpeech)  [18, 19] . The 
DA hardware, microphones, and voice analysis software were selected based on their frequency 
of use worldwide for clinical and research voice applications. 

 Twenty normophonic individuals (10 men, 10 women) participated in the study. They rep-
resented a large age range (25–61 years for females and 23–64 years for males) with equivalent 
mean ages of 39 years. The participants seated in a sound-attenuated booth provided 20 sustained 
phonations of the vowel /a  / in a habitual pitch for up to 10 s. All participants were positioned at 
a distance of 30 cm from the desktop microphones. The head-mount microphone, when used, 
was positioned at a distance of 4 cm and an angle of 45° from the participant’s mouth. The inten-
sity was measured at 30 cm distance using a digital sound level meter. The investigators main-
tained the intensity within 88 dB (A)  8  3 dB by cueing the participants to raise or lower their 
volume. This intensity was utilized to secure an acoustic environment with an invariant SNR of 
66 dB at 22 dB (A) ambient noise level within the sound booth. These phonations were recorded 
in four sessions, 30 min apart, between which the microphones were rotated amongst the DA 
systems. The two microphones with balanced output, C0 and H0, were alternated for each rota-
tion on CSL, the only DA system with balance input. The other four microphones, C1, C2, D1, 
and D2, were rotated amongst the remaining four DA systems, DT1, DT2, LT1, and LT2. Rota-
tions allowed for producing all 18 possible microphone-to-DA-system combinations. Five tokens 
(1, 2, 3, 4, 5) were obtained from each participant during each recording session. In order to re-
duce the learning effect, a preliminary session was recorded and discarded. All recordings were 
made simultaneously on all fi ve DA systems at a sampling rate of 44.1 kHz and a 16-bit quanti-
zation. Pulses were presented at the beginning and at the end of each recording session in order 
to synchronize the fi ve DA systems. All tokens were viewed and a 4-second portion of each type 
1 token, according to NCVS recommendations  [3] , was selected. 

 Five noise types, chosen to represent the most common noise interference possibilities in a 
realistic assessment environment, were recorded with a high-quality condenser desktop micro-
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phone. The noise types were inclusive of: fan noise from a computer (Fan), 60-Hz penetration 
noise from the A/C power (60 Hz), band-limited white noise (White), background speech (Talk), 
and noise from the city (City). The fi ve types of noise were digitally mixed, using Matlab version 
6.5, at precise SNR with the 66 dB (Clean) audio samples, resulting in a total of eight noise levels: 
66, 58, 50, 42, 34, 26, 18, and 10 dB SNR. 

 As a result of recording 5 tokens in four separate rotation sessions for 20 participants simul-
taneously on fi ve DA systems, a total of 2,000 Clean 4-second audio samples were obtained. 
These 2,000 audio samples were then mixed with fi ve types of noise at eight SNR levels produc-
ing a total of 80,000 samples. Three types of VQM, F 0 , jitter (RAP, %jit and jitter (rap)), and 
shimmer (Shim, %shm, and shimmer (local)) were measured using the three software analysis 
systems, MDVP, TF32, and PRAAT, respectively. The specifi c jitter and shimmer measures 
across the three programs were chosen based on the similarity of order of the perturbation func-
tion. The nine parameters resulted in a total of 720,000 output values for statistical analysis. The 
dataset was divided into three noise level ranges to answer the research questions. For range A, 
40,000 acoustic samples were analyzed at four noise levels (66, 58, 50, 42 dB SNR). For range B, 
60,000 acoustic samples were analyzed resulting from six noise levels (66, 58, 50, 42, 34, 26 dB 
SNR) and range C included 80,000 acoustic samples that resulted from all eight noise levels (66, 
58, 50, 42, 34, 26, 18, 10 dB SNR). 

 Analysis 
 The CART approach was selected since it is a binary recursive partitioning method, which 

is a powerful discovery tool for data with a complex structure  [13, 20, 21] . It has been shown that 
recursive partitioning improves the accuracy of conventional models by an average of 10–15% 
 [20, 22] . The goal in a regression tree approach is ‘to partition the data into relatively homoge-
neous (low standard deviation) terminal nodes, and obtain the mean value observed in each node 
as the node’s predicted value’  [20] . Tree building is initiated with the fi rst binary split of the most 
important variable termed the ‘parent’ node. Subsequently, this ‘parent’ node is split repetitively 
until a terminal node is reached. For the purposes of this study, the terminal node was forced 
when the next split included less than 200 tokens. For each node, the variable that provides the 
best split, as determined by the split with the minimum error, is included in the tree. The split-
ting criterion utilized for this study was the Gini impurity coeffi cient. For each split, a list of 
‘competitors’ and ‘surrogates’ are generated. Competitors might replace the ‘best’ variable at a 
particular split with a change in the structure of the split. A surrogate is a variable that might re-
place or ‘mimic’ the ‘best’ variable without much change in the split. At any split, the model at-
tempts to predict the dependent variable, and the mean for each node (within each node in 
 fi g. 1–3 ) is the predicted value. 

 Since trees may be sensitive to random noise/error in the data, a validation process is com-
monly employed when building regression trees. The validation technique used by CART, cross-
validation, allows for building very robust models that are superior to other tree and standard 
regression models  [20] . For this study, ‘10-fold’ cross-validation was employed. The data was di-
vided randomly into 10 equal subsamples (each containing 10% of the data) and the tree building 
process was repeated 10 times. First, a tree was built using the fi rst 9/10 of the data, while the 
remaining 1/10 (subsample  No. 1) was used to estimate the error rate. Then, the process was re-
peated on another 9/10 of the data, until each of the 10 subsamples had been utilized to provide 
an error rate. The resulting subsample error rates for the 10-fold sample iterations were combined 
to form the error rates for each tree. This procedure ensured the estimation of the independent 
predictive accuracy of the tree and the confi dence that the resulting tree could be generalized to 
a completely different set of data. 

 Once the tree is built and validated, the importance of each variable can be ascertained. At 
each splitting point, both the most infl uential variable and its surrogates are determined by 
CART. With conventional models, the importance of one variable is often ‘masked’ by another 
variable. For example, in a model using a stepwise procedure, the surrogates would be dropped 
out of the equation and their actual importance would be obscured. CART solves this ‘masking’ 
problem by taking into account the improvement measure not only for the primary splitter, but 
also for the surrogates. The variable importance score is calculated by ‘looking at the improve-
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  Fig. 1.  Schematic of the regression tree for F 0  based on range B with the reported mean F 0  values 
and number of samples at each node. 
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  Fig. 2.  Schematic of the regression tree for jitter based on range B with the reported mean jitter 
values and number of samples at each node. 
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  Fig. 3.  Schematic of the regression tree for shimmer based on range B with the reported mean 
shimmer values and number of samples at each node. 
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ment measure attributable to each variable in its role as a surrogate to the primary split. The 
values of these improvements are summed over each node, totaled for the tree, and scaled rela-
tive to the best performing variable’  [20]  forming the VIM. That is, the variable with the highest 
score is set to 100% and the remaining variables are scaled relative to this variable. The ranking 
is relative to the tree structure, thus, it is very important to validate each tree to obtain results 
that can be generalized. 

 The 15 regression trees discussed below were generated by the CART program version 5 
 [21] , and provide a hierarchy of the infl uential factors. Three noise level ranges for the three types 
of VQM parameters resulted in nine trees. Six additional trees were utilized to compare measure-
ments of F 0  across gender for each range. The factors included in the fi rst nine trees were: gender, 
token, microphone, noise type, noise level, DA system, and software system. The factors includ-
ed in the six trees for F 0  were the same with the exception of gender. After the tree was complet-
ed, VIM were obtained for all factors included in the tree. The tree structure and VIM allowed 
for the assessment of the relative infl uence of each factor on VQM in the presence of the other 
variables in the model. 

 Results and Discussion 

 Regression Trees 
 The interpretations of the CART statistical models provide valuable informa-

tion related to the interaction effects of the factors on VQM. The regression trees for 
each VQM parameter are shown in  fi gures 1–3 . These trees are based on results uti-
lizing range B noise levels. This range was shown to provide information on the im-
pact of noise level and type, while restricting the possible dominance of these factors 
due to invalid VQM  [9] . 

  Fundamental Frequency.  The optimal regression tree for F 0  range B resulted in 
13 levels and 130 end nodes. This tree was reduced to fi ve levels to provide a sche-
matic and to limit the complexity of interactions investigated ( fi g. 1 ). For males, 
there were no visible variations in the interaction terms amongst the factors with a 
standard order: gender, token, microphone, and DA system. For females, a greater 
variation in the interaction terms was observed. The fi rst two factors were gender 
and token. Then, the difference between tokens infl uenced the next factor. For to-
kens 2 through 5, the following and fi nal factor was microphone. However for token 
1, the next factor was software followed by microphone. Apparent differences be-
tween token 1 and the rest of the tokens for female samples caused TF32 to measure 
F 0  differently from MDVP and PRAAT, thus software became an important vari-
able. Software might be an important factor for measuring F 0  of female voices be-
cause of the higher probability of pitch extraction gross errors compared to males. 
Some pitch extraction algorithms may be more vulnerable to gender than others. The 
cause of the different interactions following token 1 for females remains unex-
plained. 

  Jitter.  The optimal regression tree for jitter range B resulted in 13 levels and 
175 end nodes. As a dependent variable, jitter appears 35% more complex than F 0  
when measured by end nodes. This tree was reduced to fi ve levels to provide a sche-
matic and to increase the relevance of interactions investigated ( fi g. 2 ). Software 
system was the fi rst variable. For PRAAT, no variation in the interaction terms was 
observed. The factors sequentially were gender, token, microphone, and DA system. 
For TF32, the next factor was noise level. For the clean samples (66 dB SNR), the 
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next factor was token followed by gender. For the other levels, the order was re-
versed, gender was the next factor followed by token. This difference between the 
order of factors for 66 dB SNR versus the other SNRs highlights the impact that even 
small amounts of noise may have on VQM. For MDVP, the second factor was gen-
der. Microphone was the next factor for females, while DA system was next in im-
portance for males. Thus, gender has an impact on the importance of microphone 
and DA system. For females, half of the microphones (C0, C2, D2) infl uenced the 
occurrence of token as the next factor, while the other half (H0, D1, C1) was followed 
by DA system. Thus, for females the type of microphone is a factor in determining 
the contribution of intrasubject variability and DA system. For males, DT1 was fol-
lowed by token. The remaining DA systems were followed by microphone. For 
males, when the DT1 hardware with the MDVP software was utilized, microphone 
did not appear to be a signifi cant factor. However, when other DA systems were 
used, intrasubject variability was not signifi cant. The interpretation of this regres-
sion tree suggests that the data structure of jitter is highly dependent on the software 
used. This fi nding is due to the signifi cant differences in the algorithms of the three 
programs, which likely do not measure the same voice feature. Therefore, frequency 
perturbation values obtained with different analysis software cannot be compared. 

  Shimmer.  The optimal regression tree for shimmer range B resulted in 14 levels 
and 392 end nodes. The number of levels and end nodes illustrates the complexity 
of shimmer when compared to F 0  (202% more complex) and jitter (124% more com-
plex), concurring with previous fi ndings that shimmer is the VQM most vulnerable 
to infl uences. This tree was reduced to fi ve levels to provide a schematic and to lim-
it the complexity of interactions investigated ( fi g. 3 ). The fi rst factor for shimmer, 
like jitter, was software system. However, unlike jitter, MDVP and PRAAT followed 
the same course throughout the tree, while TF32 diverged. All software systems had 
the same second factor, gender. For TF32, females split on DA system. The CSL dif-
fered from the rest of the systems and was followed by noise level. For SNR levels 
between 34 and 66 dB, microphone was the following and fi nal factor. However, for 
26 dB SNR, token was the fi nal factor. Thus, gender infl uences the importance of 
DA systems, noise level, and microphone. For TF32, males split on microphone. The 
H0 microphone was followed by noise level and token as factors. The remaining mi-
crophones split on noise level. For SNRs 34 dB and above, microphone was the fi nal 
factor with C2 and D2 differing from the other three. For 26 dB SNR, noise type 
emerged as a fi nal factor with White and Talk noises splitting from Fan, 60 Hz and 
City. For MDVP and PRAAT, females split on noise level. For SNR 34 dB and 
above, microphone and then token were the following factors. For 26 dB SNR, noise 
type and microphone were the following factors. For MDVP and PRAAT, males 
split on microphone. For H0 noise level was the next factor, while for the desktop 
microphones, token and noise level were the following factors. These results suggest 
that amplitude perturbation data obtained with MDVP and PRAAT is fully compat-
ible, while shimmer computed by TF32 has signifi cantly different values and data 
structure. The regression tree model also provided an independent confi rmation of 
earlier fi ndings  [9]  that: (1) shimmer is most sensitive to environmental noise infl u-
ences in comparison to F 0  and jitter; (2) noise can invalidate shimmer values at SNR 
below 30 dB, and that (3) noise type infl uences VQM differentially at noise levels 
below 30 dB SNR. 
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 Variable Importance Measures 
 The results of the CART statistical models provide valuable information re-

lated to the overall importance of the factors that affect VQM. The following results 
indicate the order of infl uence of the factors for each VQM. The VIM of each factor 
is shown in  fi gures 4  and  5 . The factors are arranged from most infl uential to least 
infl uential. 

  Fundamental Frequency.   Figure 4 a demonstrates how the VIM change for F 0  
across the three different noise level ranges. Gender remains the most infl uential 
factor across all three noise level ranges. When environmental noise is controlled, at 
least within recommended or acceptable levels, token (intrasubject variability), mi-
crophone, and software are the most important factors. The factors listed after gen-
der have VIM values close to zero. The most prominent changes for all three models 
occur in the transition from range B to range C. As lower SNRs are included in the 
data to be analyzed, noise type, software, and noise level become the most infl uential 
factors, with the exception of males ( fi g. 4 c) where an increase in importance for 
noise type was not shown. In agreement with earlier fi ndings  [9] , the results shown 
for range C reconfi rm the importance of controlling for the type and level of envi-
ronmental noise. That is, SNR levels below 25 dB are not adequate to perform reli-
able and valid acoustic voice analyses. These results stress the importance of care-
fully selecting software systems and microphones as well as using multiple tokens in 
order to obtain accurate results. To further explore the importance of these factors 
when gender was not included in the model, F 0  was separately analyzed for males 
and females. For females ( fi g. 4 b) and males ( fi g. 4 c), there is no change in the order 
of relative importance of factors between range A and range B. However, for females 
the VIM values change signifi cantly between range A and range B, demonstrating 
that microphone, software, and DA system become increasingly important as SNRs 
decrease from 42 to 26 dB. Results for males suggest that token, microphone, and 
DA system are the main factors to consider when measuring F 0  in an environment 
that has an SNR above 26 dB. As shown in  fi gure 4 c, token remains the most infl u-
ential factor for males across all ranges. When the lower SNRs are included (range 
C), the results show that software and noise level become the most important factors 
to consider. For females, when SNR decreases below 26 dB, the model illustrates 
that noise type, software, and noise level become the most important factors. These 
results further demonstrate the importance of controlling the noise in the environ-
ment and selecting appropriate software and hardware when measuring F 0 . 

  Jitter.  As seen in  fi gure 5 a, for measurements of jitter, the model reveals that 
software is the most infl uential factor and remains so across range B. Similarly, gen-
der remains the second most infl uential factor. For range B, environmental noise 
(noise level and noise type) does not yet have a signifi cant effect. In fact, DA system 
and microphone have increased relative importance for range B, suggesting that 
these factors have more infl uence on VQM within this SNR range. When data from 
SNR levels deemed as unacceptable are included in the analysis (range C), noise 
level, noise type, and software system become the most prominent factors. These 
results further suggest that when performing an acoustic voice analysis, noise level, 
noise type, software system, and microphone signifi cantly affect the reliability and 
validity of the jitter values obtained. 

  Shimmer.  As shown in  fi gure 5 b, software, gender, and microphone are the most 
infl uential factors when obtaining shimmer measurements within acceptable SNR 
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  Fig. 4.  Block diagram of the factor order and specifi c VIM for F 0  across the three SNR ranges for 
all ( a ), female ( b ), and male ( c ) participants. 
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levels. Shimmer is affected by noise level as demonstrated in the transition from 
range A to range B, which displays an increase in the importance of noise level. The 
most prominent changes overall occur between range B and range C, where the in-
clusion of lower SNR causes the factors of noise level and noise type to signifi cantly 
increase in importance. All other factors, with the exception of DA system, decreased 
in relative importance, demonstrating the degree of infl uence that noise has on mea-
surements of shimmer. 
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  Fig. 5.  Block diagram of the factor order and specifi c VIM for jitter ( a ) and shimmer ( b ), across 
the three SNR ranges. 
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